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A quantum Monte Carlo method with a nonlocal update scheme is presented. The method is based on a
path-integral decomposition and a worm operator which is local in imaginary time. It generates states with a
fixed number of particles and respects other exact symmetries. Observables like the equal-time Green’s func-
tion can be evaluated in an efficient way. To demonstrate the versatility of the method, results for the one-
dimensional Bose-Hubbard model and a nuclear pairing model are presented. Within the context of the Bose-
Hubbard model the efficiency of the algorithm is discussed.
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I. INTRODUCTION

Quantum Monte Carlo �QMC� simulation is a powerful
and versatile method for the investigation of thermodynamic
properties of many-body systems. When generating a Mar-
kov chain of configurations using a Metropolis scheme �1�, it
is known that updates based on local changes are inefficient,
particularly near critical points. At transitional points this
type of algorithm gives very large autocorrelation times, a
phenomenon one refers to as “critical slowing down” �2�. By
developing nonlocal update schemes, this problem has been
overcome for second-order phase transitions. The Wolff
single-cluster algorithm �3� and the Swendsen-Wang
multiple-cluster algorithm �4�, both used to solve classical
physics problems, were successful applications of this idea.
In the same spirit, loop algorithms �5–7� were developed for
the study of discrete quantum systems. New configurations
are obtained by flipping clusters in the form of loops. The
systematic error caused by the Suzuki-Trotter approximation
�8,9� was eliminated by formulating the world-line algo-
rithms directly in continuous imaginary time �10,11�. In the
worm algorithm �12�, the partition function is embedded in
an extended configuration space, allowing a direct and exact
evaluation of the one-body Green’s function. The concept of
nonlocal loop updates has also been implemented in the sto-
chastic series expansion �SSE� representation �13�, leading to
“operator loop” update algorithms �14,15� and “directed
loop” algorithms �16,17�, which are a further optimization of
the loop construction. The general idea behind this is to con-
struct moves in a locally optimal way �18�.

All the nonlocal update world-line algorithms which are
mentioned above sample the grand-canonical ensemble. In
this way one can generate configurations with, e.g., varying
magnetization or occupation number. Results for the canoni-
cal ensemble are obtained by using only the configurations
with the right particle number �19� or by rejecting loop up-
dates which change this number �6�. It is clear that this is an
inefficient way of working. Sampling the canonical ensemble
directly would be advantageous when studying systems
where particle conservation is important. One example is the
transition between the superfluid and Mott phases in the
Bose-Hubbard model at commensurate filling. This transition
belongs to the �d+1�-dimensional XY universality class �20�.
When entering the superfluid phase, it becomes difficult to

keep the number of bosons constant and tuning the chemical
potential can become a very time-consuming task. When
simulating mesoscopic systems like superconducting grains
�21,22� or atomic nuclei �23,24�, it is primordial to keep the
number of particles constant. A world-line algorithm satisfy-
ing these conditions is presented �25� and discussed in detail
in this paper. Besides particle-number conservation, the al-
gorithm allows us to include other symmetry projections. It
is constructed in such a way that all moves are accepted,
which makes it efficient to run and easier to code. Though
working in the canonical ensemble, our algorithm is still able
to generate configurations with different winding numbers, in
contrast to the local world-line method by Hirsch et al. �26�.
We will demonstrate the versatility of the method by apply-
ing it to bosons and to paired fermions.

II. THE ALGORITHM

Practically all QMC methods are based on a decomposi-
tion of the evolution operator e−�H. The trick is to break up
this operator into pieces which can be handled exactly �27�.
Generally one can write the Hamiltonian as consisting of an
easy part H0 and a residual interaction V,

H = H0 − V . �1�

The minus sign has been included to ease notations further
on. For such a Hamiltonian, one can make an exact pertur-
bative expansion in V of the evolution operator, using the
following integral expression �11�:

e−�H = �
m=0

� �
0

�

dtm�
0

tm

dtm−1¯�
0

t2

dt1V�t1�V�t2�¯V�tm�e−�H0,

�2�

with V�t�=exp�−tH0�V exp�tH0� and � the inverse tempera-
ture �also called imaginary time�. The basic idea of the
continuous-time loop algorithm �6,10� and the worm algo-
rithm �12� is to insert two adjoint world-line discontinuities.
By propagating one of these discontinuities �which are called
the mobile “worm head” and stationary “worm tail”� through
lattice space and imaginary time, the configuration changes
in such a way that detailed balance is fulfilled. At that point
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one is not sampling according to the partition function
Tr�e−�H�, but according to an extension hereof,

Tr�W†e−�HWe−��−��H� , �3�

with � the imaginary time interval between the worm head
operator W† and tail operator W. The worm head can be
creating or annihilating, depending on the choice of W. After
some Markov steps, the worm head bites its tail and the
discontinuities are removed. Only configurations with con-
tinuous world lines can contribute to the statistics according
to Tr�e−�H�. In contrast to these algorithms, we will work
with a worm which is local in imaginary time. The evolution
operator extended by such a local worm �an imaginary time-
independent operator A to be defined below� reads

U���,�� = e−�HAe−��−��H, �4�

where � can be regarded as the imaginary time at which the
worm operator is inserted. We will show that by working
with a local worm operator one can construct a very efficient
sampling method, provided that the worm operator com-
mutes with the residual interaction �AV=VA�. If A further-
more commutes with the generators of a symmetry of H0 and
V, one can restrict the sampling to configurations with those
specific symmetries, leading to symmetry-projected results.
In particular one can sample the canonical ensemble with a
worm operator that conserves particle number. We would
like to emphasize at this point that the algorithm stated be-
low does not depend on the specific structure of A. The op-
erator A has to be chosen in such a way that an ergodic
Markov chain can be constructed, and therefore it will de-
pend on the specific form of the interaction V.

If one decomposes the trace �restricted to the wanted par-
ticle number and symmetry� of U��� ,�� using Eq. �2� and
inserts complete sets of eigenstates of H0 at all imaginary
times, one obtains a set of integrals which can be evaluated
using Monte Carlo sampling. The Markov process will
sample the configurations proportional to the weights

W�m,i,t,�� = �i0�V�i1	e−�t2−t1�Ei1�i1�V�i2	e−�t3−t2�Ei2¯

�iL−1�V�iL	e−��−tL�EiL�iL�A�iR	e−�tR−��EiR�iR�V�iR+1	¯

�im−1�V�im	e−�tm−tm−1�Eim�im�V�i0	e−��+t1−tm�Ei0. �5�

Each configuration is specified by an order m �the number of
interactions�, a set i of eigenstates of H0 �with i a shorthand
notation for all the intermediate states
�i0	 , . . . , �iL	 , �iR	 , . . . , �im	�, interaction times t1 , . . . , tm, and
the worm insertion time �. We use the notation Eij
= �ij �H0 � ij	. The configuration �iL	 to the left of the worm is
changed by the worm operator into the configuration �iR	. We
use the subscript L �R=L+1� to indicate the eigenstate �iL	
��iR	� and interaction time tL �tR� just before �after� the worm
operator in imaginary time. We will call the configurations
for which iL= iR diagonal configurations. By choosing the
worm operator such that its diagonal elements are constant
�i.e., �i �A � i	=c for all basis states �i	�, the sum of the weights
of all diagonal configurations is proportional to the particle-
number-projected trace of the evolution operator U���. This

is nothing else than the canonical partition function
TrN�e−�H�, with TrN the particle-number-projected trace.
Hence, sampling the configurations proportional to their
weights W�m , i , t ,�� leads to a sampling of the canonical
ensemble. The Markov process is set up using the
Metropolis-Hastings algorithm �1,28�, thereby sampling in
an extended space according to TrN�U��� ,���. At each Mar-
kov step only a few of the factors of Eq. �5� are altered by
the worm operator which moves to a new point in imaginary
time. These worm operator moves will be constructed in a
such a way that detailed balance is fulfilled locally at each
Markov step. Therefore it is also fulfilled when going from
one diagonal configuration to another. It takes a number of
Markov steps before diagonal observables �i.e., observables
which commute with H0� can be measured again. While each
Markov step contains only local changes, the chain of steps
between two diagonal configurations corresponds to a global
update. Nondiagonal operators can be measured using the
fact that one samples in an extended space. By keeping track
of the worm moves between two diagonal configurations,
statistics for the expectation values of nondiagonal operators
can be collected, similar to the way one evaluates the one-
body Green’s function in the worm algorithm �12�. Our
method, however, will lead to much better statistics for
equal-time nondiagonal operators, because the worm opera-
tor is always local in imaginary time.

Before shifting the worm operator over some imaginary
time interval ��, a direction D has to be chosen. One can
choose between the directions D=R �higher values of �� and
D=L �lower values of �� with some probability P�D�, to be
specified later. The presence of the exponentials in Eq. �5�
inspires us to choose the time shift �� proportional to an
exponential distribution,

P����d�� = �De−�D��d�� , �6�

with �D an optimization parameter. In shifting the worm op-
erator from � to a new imaginary time ��=�+��, the worm
operator can encounter an interaction operator V at some
time in between. Assume the direction R is chosen and the
worm operator meets an interaction at time tR. Let us first
consider the situation where the worm operator moves
through this interaction, without annihilating it,

�iL�A�iR	�iR�V�iR+1	 → �iL�V�iR�	�iR� �A�iR+1	 . �7�

When passing the interaction, the intermediate state can
change. A convenient way to pick one of these possible
changes is to choose the new configuration proportional to its
weight

PR+1,L�iR�� =
�iL�V�iR�	�iR� �A�iR+1	

�iL�VA�iR+1	
. �8�

Part �a� of Fig. 1 shows a diagrammatic representation of the
different ways in which a general one-body worm operator
A=�i,j cijai

†aj �for some constants cij� can pass a similar in-
teraction V. The worm operator is represented by a curly line
and the interaction by a vertical straight line. For this type of
worm and interaction operator there are always at most four
ways in which the intermediate state can change. It should be
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noted that our choice, Eq. �8�, is not unique and possibly
more optimal choices can be found �18�. Because of this
choice, however, there appears a factor

nR+1,L =
�iL�V�iR�	�iR� �A�iR+1	PL,R+1�iR�
�iL�A�iR	�iR�V�iR+1	PR+1,L�iR��

=
�iL�VA�iR+1	
�iL�AV�iR+1	

, �9�

in the acceptance factor of the Metropolis-Hastings algo-
rithm. Every time the worm operator passes an interaction an
analogous factor appears, depending on the direction D of
propagation. Therefore it is advantageous to impose on A the
condition

AV − VA = 0, �10�

because then nDD�=1 in all cases, and we do not have to
worry about this normalization factor anymore. Furthermore,
Eq. �10� ensures that the worm operator can always pass the
interaction it encounters. If one would choose a worm opera-
tor A that does not satisfy this condition, as in grand-
canonical algorithms, it is possible the worm operator cannot
pass the interaction and the direction of propagation has to
change, in that way undoing changes previously made. It is
intuitively clear that these “bounces” give rise to a slow
decorrelation and should be avoided �16–18�. In the directed
loop algorithm one increases the efficiency of the loop up-
date by minimizing the appearance of bounces, but they can-

not be eliminated completely because of the reversibility
condition. In what follows we will assume the condition Eq.
�10� is fulfilled, making the algorithm bounce free. We will
drop the factors nDD� to ease the equations. After passing
through the interaction at time tD, one has to choose a new
imaginary-time shift ��. However, one can avoid generating
a new random number by taking the new shift as follows:

�� = ��� − tD�
��D�old

��D�new
, �11�

where the parameter �D has been updated after passing the
interaction.

The choice of the parameters �D follows from detailed
balance. Because the time shifts �� of the worm operator are
chosen by Eqs. �6� and �11�, adding the constraint

ER − EL = �L − �R �12�

ensures that all the exponentials which appear in the accep-
tance factor of the Metropolis-Hastings algorithm cancel,
leading to an efficient sampling method. So in practice one
can choose any positive value for �L and �R, as long as Eq.
�12� is fulfilled at each step of the worm movement. To con-
clude, we write down the acceptance factor for the above
procedure when the worm operator does not change the num-
ber of interactions,

q =
W�m,i�,t�,���P�i�,t�,�� → i,t,��

W�m,i,t,��P�i,t,� → i�,t�,���
=

��D��initial

��D�final
, �13�

where ��D�final ���D��initial� is the value of �D ��D�� at the end
�beginning� of the worm operator move into direction D and
D� denotes the opposite direction of D. The actual accep-
tance probability is given by min�1,q�, according to the
Metropolis-Hastings algorithm.

Let us now introduce a number of steps, which allow us to
change the number of interactions in a reversible way. We
want the acceptance factor of such updates to be local; i.e.,
the probability to pass, create, or annihilate an interaction
should only depend on the properties of the state at that point
in imaginary space-time. We consider three extensions of the
procedure outlined above where no interactions are created
or deleted.

�i� At the beginning of the Markov step, we introduce the
possibility that the worm operator creates a new interaction
with probability cD, which depends on the direction D of
propagation. This creation will also change the intermediate
state:

�iL�A�iR	 − → �iL�V�i�	�i��A�iR	 , �14�

assuming again the worm operator is moving in the D=R
direction. The new intermediate state �i�	 will be chosen with
probabilities

PRL�i�� =
�iL�V�i�	�i��A�iR	

�iL�VA�iR	
. �15�

For a worm operator move in the D=L direction, probabili-
ties PLR�i�� can be defined in an analogous way. Figures 1�b�
and 1�c� show a diagrammatic representation of the insertion
of a one-body interaction at the beginning of the worm

FIG. 1. �Color online� A diagrammatic representation for one-
body worm operator moves. The worm operator is represented by a
curly line and the interaction V by a solid vertical line. We distin-
guish between the following updates. �a� When the worm operator
moves in the D=R direction, it can encounter some interaction. The
worm operator can pass the interaction, in that way changing the
intermediate state. For general one-body worm and interaction op-
erators, there are at most four possible ways in doing this. �b�, �c� At
the beginning of the worm move, we introduce the possibility of
inserting an interaction. When the initial worm is diagonal �repre-
sented by circles�, a number of interaction insertions of the type
shown in �b� are possible. In part �c� the initial worm operator is not
diagonal and an interaction insertion can make the worm diagonal
or not.
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move. For a diagonal configuration only the diagonal part of
A contributes to the matrix element �iL �A � iR	. In this situa-
tion the worm operator is represented by little circles and all
world lines are continuous. We will call this the “diagonal
worm.”

�ii� When the worm operator arrives at an interaction, one
also has to consider the possibility of annihilating that inter-
action. Suppose the interaction can be deleted. Let aD be the
probability to annihilate the interaction while continuing the
worm update and sD the probability to annihilate the interac-
tion and stop the worm update. Then 1−aD−sD is the prob-
ability to pass through that interaction and continue the
worm operator.

�iii� To maintain reversibility, one also has to include the
possibility that the construction of the Markov step does not
halt at the moment the worm operator has finished a shift ��
without encountering an interaction. At that point one has to
choose between stopping the worm operator, or to continue,
with the possibility of inserting a new interaction at that
point. Let fD be the probability to continue the worm opera-
tor without inserting an interaction and gD the probability to
insert an interaction and to continue the worm operator; then,
1− fD−gD will be the probability to stop the worm operator,
without inserting an interaction.

After creating, annihilating, or passing an interaction, a
new time shift �� should again be chosen according to Eq.
�6� or �11�. Note that the parameter fD is redundant: jumping
with a parameter �D and continuing the worm operator unal-
tered with probability fD is statistically equivalent to making
a jump with parameter �D�1− fD� and then choosing between
either stopping the worm operator or inserting an interaction
and move on. Therefore, one can set fD=0 without loss of
generality. We now determine how the other parameters
should be chosen in order to satisfy detailed balance. Assume
a direction D is chosen. When no interaction is inserted at
the beginning of the worm move, a factor

qD
0 =

�D��1 − gD��

1 − cD
, �16�

appears in the acceptance factor. If, on the other hand, an
interaction is created at the initial time � of the worm opera-
tor, this will lead to a factor

qD
c =

NDD�sD�

cD
, �17�

with

NDD� =
�iD�VA�iD�	

�iD�A�iD�	
. �18�

A new intermediate state is chosen with probabilities, Eq.
�15�. At the end of the Markov step, the worm operator will
annihilate an interaction or not, leading to extra factors in the
global acceptance factor which have the inverse form of Eqs.
�17� and �16�, because of the inverse symmetry between be-
ginning and end of the move. At intermediate points, we can
encounter the following situations. The worm operator can
stop after a shift �� between two interactions, insert an in-

teraction, and move on. The inverse situation of this can also
occur when an interaction is annihilated and the worm op-
erator moves on. Or the worm operator can simply pass an
interaction without annihilating it. In order to have a good
total acceptance factor, we will require that these intermedi-
ate steps do not contribute to the acceptance factor. This
condition leads to the constraints

NDD�aD� = �DgD, �19�

aD + sD = aD� + sD�. �20�

Apart from that, we want the sampling to be as uniform as
possible, which suggests the condition qD

0 =qD
c . Putting all

this together, the total acceptance factor is given by

q =
W�m�,i�,t�,���P�m�,i�,t�,�� → m,i,t,��

W�m,i,t,��P�m,i,t,� → m�,i�,t�,���
=

�qD�initial

�qD��final
,

�21�

where

qD = �D� + NDD��sD� − aD� . �22�

The factor �qD�initial/final has to be evaluated at the beginning
and end of the Markov step in direction D �with D� the
opposite of D�. The creation probability is given by Eq. �17�,

cD =
NDD�sD�

qD
. �23�

We still have to determine how to choose the direction D.
The acceptance ratio of Eq. �21� inspires us to choose the
direction of the move with probabilities

P�D = R� =
qR

RLR
, �24�

P�D = L� =
qL

RLR
, �25�

with RLR=qR+qL. By accepting all worm operator moves a
distribution, given by

W��m,i,t,�� = RLRW�m,i,t,�� , �26�

will be sampled, instead of the distribution W�m , i , t ,��. Be-
cause the factors RLR fluctuate only mildly in practice, ac-
cepting all moves still leads to a very useful sampling
method. It speeds up the algorithm and reduces the complex-
ity of the code. Finite-temperature observables can still be
evaluated by taking the extra weighting factor into account:

�Q	� =
Tr�e−��H0−V�Q�
Tr�e−��H0−V��

=
�s�S �Qs/�RLR�s�

�s�S �1/�RLR�s�
. �27�

Each time the worm operator creates, annihilates, or
passes an interaction, the parameters �D, cD, aD, sD, and gD
are determined by Eqs. �12�, �20�, �22�, and �23�. This still
leaves a lot of freedom. We will focus here on two limiting
cases. First we will consider the case where one of the two
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parameters �R and �L is always zero. In that way the time
shift �� can become infinite. This amounts to the worm op-
erator directly jumping to the next interaction, which speeds
up decorrelation in imaginary time direction. In order to ob-
tain a worm move that changes the configurations as much as
possible, the parameters gL, gR, aL, and aR are maximized.
The set of parameters obtained in this way is shown in Table
I for the case ER�EL. We will call this solution A. The
solution for the case EL�ER can be found by interchanging
the subscripts L and R. Note that in this solution the worm
operator always starts to move into the direction of the high-
est diagonal energy. It is clear that whenever the worm op-
erator is moving in the direction of the highest diagonal en-
ergy or whenever ER=EL, the time shift �� becomes infinite.
There are a number of extra conditions one should keep in
mind. Assume the worm operator starts to move in the direc-
tion D=R �because ER�EL�. When the worm operator ar-
rives at an interaction that can be annihilated, one has to
determine EL, ER, and NLR after the annihilation. If ER
�EL is still satisfied, then sR and aR from Table I are the
correct probabilities to stop or continue the worm operator. If
now EL�ER, on the other hand, one has to use the solution
sR=min�1,

EL−ER

NLR
� and aR=0, but the worm operator keeps

moving in the same direction. The time shift of the worm
operator is only finite when it moves in the direction D and
ED�ED� . Note also that only gL is mentioned in Table I,
because the parameter gD has only meaning when the time
shift is finite. In the present solution, however, a problem
arises whenever EL=ER. In this case �R=�L=0 and the time
shift �� is always infinite. Because sR=sL=0 in addition, the

worm operator never halts. As a consequence configurations
with a diagonal worm will never be sampled. This can be
solved by proposing a small but finite stopping probability.
This alternative solution for the case EL=ER is also given in
Table I. The global parameter � should be taken small �such
that 0���NDD� for all diagonal configurations� but not
zero and can be chosen in order to optimize the decorrelation
between successive evaluations of observables. Note that RLR
of Eq. �26� takes the constant value 2�.

Another possibility to find algorithm parameters follows
from the idea that we want the step size �� to be of the order
of the mean imaginary-time interval between two interac-
tions. Therefore we consider the case where one of the two
parameters �R and �L is NLR. As a consequence the time shift
is always finite. For ER�EL such a set of parameters is given
in Table II. Again, the case EL=ER needs an alternative so-
lution, since otherwise RLR would be zero for diagonal con-
figurations. We will refer to this solution as solution B.

In short, the algorithm is based on a time-dependent per-
turbation in the interaction V �see Eq. �2��, so there is no
systematic error arising from time discretization. Because we
choose time shifts of a worm operator according to Eq. �6�,
the diagonal part of the Hamiltonian is handled exactly.
There are a number of algorithm parameters, which have to
satisfy Eqs. �12�, �20�, �22�, and �23�. We have derived two
sets of algorithm parameters satisfying these equations. In
the first set �solution A� one of the parameters �D is always
zero and in the second �solution B� it is equal to NLR. There-
fore the main difference between these two solutions will be
the size of the imaginary time shift ��. Other algorithms
where �R or �L takes values between 0 and NLR can be con-
structed in a similar way, taking for now only these limiting
cases. In the next section our QMC algorithm will be applied
to the Bose-Hubbard model. The efficiency of the two dif-
ferent solutions leading to different algorithms will be com-
pared in this context.

TABLE I. A set of algorithm parameters satisfying Eqs. �12�,
�20�, �22�, and �23� for the cases EL=ER and EL�ER �otherwise
interchange the subscripts L and R�. We call this solution A, for
which one of the parameters �D is always zero.

Parameters

Diagonal configurations
�iL= iR�

�EL=ER�

Diagonal configurations
�iL� iR�

�EL�ER�

�R 0 0

�L 0 ER−EL

qR � ER−EL

qL � 0

cR 1 min�1,
NLR

ER−EL
�

cL 1 0

sR
�

NLR
0

sL
�

NLR
min�1,

ER−EL

NLR �
aR 0 min�1,

ER−EL

NLR �
aL 0 0

gL 0 min�1,
NLR

ER−EL
�

RLR 2� ER−EL

TABLE II. An alternative set of parameters for which one of the
parameters �D is always NLR. We call this solution B. The param-
eter � can be chosen to optimize the algorithm.

Parameters

Diagonal configurations
�iL= iR�

�EL=ER�

Diagonal configurations
�iL� iR�

�EL�ER�

�R NLR NLR

�L NLR NLR+ER−EL

qR NLR ER−EL

qL NLR 0

cR � 0

cL � 0

sR � 0

sL � 0

aR � 1

aL � 1

gR � 1

gL �
NLR

NLR+ER−EL

RLR 2NLR ER−EL
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III. APPLICATION TO THE BOSE-HUBBARD MODEL

Ultracold bosonic atoms in an optical lattice are described
by the Bose-Hubbard model �29–31�

H = − t�
�i,j	

Ns

bi
†bj +

U

2 �
i

Ns

ni�ni − 1� , �28�

with bi
† �bi� the boson creation �annihilation� operator on site

i, ni the number operator on site i, and �i , j	 denoting nearest
neighbors. The lattice has Ns sites occupied by N bosons.
The parameter t is the tunneling amplitude, and U is the
on-site repulsion strength. We will restrict the discussion
here to the one-dimensional homogeneous case without trap.
At low values of U / t the system forms a compressible su-
perfluid. This phase is characterized by a gapless excitation
spectrum and long-range phase coherence. By increasing
U / t, a quantum phase transition from a superfluid state to a
Mott insulating state is achieved at integer densities. In the
pure Mott phase the bosons are localized at individual lattice
sites and all phase coherence is lost due to quantum fluctua-
tions. In addition, density fluctuations disappear when enter-
ing the Mott phase and a gap appears in the excitation spec-
trum. This phase driven transition belongs to the Berezinskii-
Kosterlitz-Thouless �BKT� �32,33� universality class in one
dimension. The Bose-Hubbard Hamiltonian can be rewritten
in the form of Eq. �1�,

H0 =
U

2 �
i

ni�ni − 1� ,

V = t�
�i,j	

bi
†bj . �29�

As argued above, it is advantageous to take the worm opera-
tor A such that it commutes with V. An operator that satisfies
this condition is given by

A =
1

N̄
�

i

ni + �
i�j

bi
†bj , �30�

with N̄ a c number to be optimized. In our calculations this
parameter is always set equal to the total number of particles.
We have checked our code by comparing with exact diago-
nalization results for small lattices. Ergodicity was tested nu-
merically. Power-law behavior of correlation functions coin-
cides with predictions from bosonization theory for large
lattices.

The one-body Green’s function G�r�= �bi
†bi+r	 is calcu-

lated by updating the entry r in a histogram for G�r� at every
Markov step. The function G�r� can be normalized directly
from the diagonal/nondiagonal worm fraction. The nondi-
agonal worm components bi

†bi+r of Eq. �30� can be given a
different weight, leading to a worm matrix representation of
the symmetric Toeplitz type �i.e., a symmetric matrix with
constant values along negative-sloping diagonals�. Such a
worm operator still commutes with the interaction part V of
the Hamiltonian. By giving some worm components a bigger
weight, the corresponding components G�r� will be updated
more often, leading to a higher accuracy and mimicking flat

histograms �34�. The condensed fraction 	c can be deter-
mined via

	c =
1

NNs
�
i,j

Ns

�bi
†bj	 . �31�

The superfluid fraction can be determined using the winding
number �35�

	s =
�W2	Ns

2

2tN�
, �32�

where �W2	 is the mean square of the winding number op-
erator in one dimension. Figure 2 shows the condensed and
superfluid fractions for a uniform one-dimensional system of
128 sites at a density of exactly one particle per site. Calcu-
lations were performed at an inverse temperature �=128t−1,
using the algorithm based on solution A. We have used the
algorithm to study the quantum critical behavior of the one-
dimensional Bose-Hubbard model with constant filling, us-
ing renormalization group flow equations. Studying the BKT
transition is notoriously difficult because of the logarithmic
finite-size corrections. The present algorithm has the big ad-
vantage of keeping the density constant, in contrast to the
grand-canonical approaches. The results of this study will be
presented elsewhere �36�.

We compare the efficiencies of solutions A and B. To this
purpose, we simulate a one-dimensional lattice with 32 sites
at an inverse temperature �=32t−1 and a filling factor of one
boson per site. The simulations consisted of 40 Markov
chains that each ran 600 s after thermalization on a Pentium
III processor. The same code was used, with only minor
changes to go from algorithm A to B. We discuss the effi-
ciency by looking at the standard deviations on the expecta-
tion value of V of Eq. �29� and on the average squared den-
sity. We calculated the squared density n2 by averaging over
all sites,

FIG. 2. Superfluid �	s� and condensed fraction �	c� for the one-
dimensional homogeneous Bose-Hubbard model as a function of
U / t. The fractions have been calculated for a uniform lattice with
Ns=128 at an inverse temperature �=128t−1, using Eqs. �31� and
�32�. The condensed fraction was calculated from the correlation
function �bi

†bi+r	, for which we have high statistics.
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�n2	 =
1

Ns
�

i

Ns

�ni
2	 . �33�

The expectation value of the interaction term V was not cal-
culated via the correlation function G�1�, but by counting the
number of interaction vertices in the configuration whenever
the worm operator was diagonal �37�. When looking at the
standard deviation on the squared density �Fig. 3�, one can
conclude that solution A is the most efficient one. We found
a similar picture when looking at the standard deviations on
the expectation value of H0 of Eq. �29�. The errors on the
standard deviations lie within 10%. From the standard devia-
tion on the expectation value of the interaction term V �Fig.
4�, it follows that solution B is better in the superfluid phase.

The same conclusion follows from the total energy. For the
condensed fraction the deviations are smallest for solution A
for all values of U / t. Those on the superfluid fraction lie very
close for solution A and B �see Fig. 5�. We found that vary-
ing the parameter � of Tables I and II does not change the
efficiency in a significant way, as long as � is not too small.
For further simulations we will always choose the parameter
� as big as possible, under the constraint �
NDD�. Figures
3–5 show also standard deviations resulting from the di-
rected loop SSE algorithm �16–18�. One has to be very care-
ful when comparing the efficiencies of different algorithms.
First, the SSE code works in the grand-canonical ensemble.
In the SSE simulations, the chemical potential was changed
in such a way that N remained constant. Second, the effi-
ciency does not only depend on the algorithm, but also on
the used data structures. In a SSE approach, the decomposi-
tion of the evolution operator corresponds to a perturbation
expansion in all terms of the Hamiltonian, while the decom-
position, Eq. �2�, perturbs only in the off-diagonal terms V.
For the Bose-Hubbard model, where the contribution of the
diagonal terms is large, the last approach is preferable. For
all calculated observables the standard deviations resulting
from the SSE code were the largest. Figures 3 and 4 show
that the SSE deviations increase rather rapidly with increas-
ing U / t, whereas the deviations resulting from our method
remain of the same order. We also calculated autocorrelation
times for different observables. Here each bin ended after a
constant number of measurements. We noticed that for solu-
tion B the autocorrelation times became very big for high
values of U / t. For small U / t, the autocorrelation time for
solution A is of the order of the number of Markov steps
needed for ten diagonal updates and increases only slowly
with increasing U / t. Of course it should be noted the algo-
rithm based on solution A had to run much longer in order to
get the same number of diagonal measurements. For all mea-
sured observables we found similar autocorrelation times.

We conclude that solution A, derived in the previous sec-
tion, is more efficient than solution B, except in the super-
fluid phase when looking at the interaction energy V. This

FIG. 3. A comparison between the standard deviations on the
squared density �see Eq. �33�� resulting from the directed loop SSE
algorithm and the algorithms based on solutions A and B. The ho-
mogeneous Bose-Hubbard model is simulated for a lattice with 32
sites and 32 bosons at an inverse temperature �=32t−1. The devia-
tions resulted after a QMC calculation with 40 independent Markov
chains that each ran 600 seconds on a Pentium III processor.

FIG. 4. The standard deviation on the mean value of V �see Eq.
�29�� for the homogeneous Bose-Hubbard model as a function of
U / t. Here solution A is the most efficient one in the Mott phase. In
the superfluid phase, solution B becomes more efficient.

FIG. 5. The standard deviation on the mean value of the super-
fluid fraction 	s. The deviations result from solutions A and B and
the directed loop SSE method. Each simulation consisted of 40
independent Markov chains that each ran 600 s.
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can be understood by remarking that the time shifts of the
worm operator are much larger for solution A. In the algo-
rithm based on solution B, the time shifts are of the order of
the mean imaginary time between two interaction vertices in
the configurations. This explains why the standard deviations
on the interaction energy are smallest for this solution in the
superfluid phase. We also conclude that our algorithm is
more efficient than the directed loop SSE algorithm when
simulating the one-dimensional Bose-Hubbard model. In the
next section, we will apply the algorithm to a pairing model.
In what follows, all calculations are performed using the al-
gorithm based on solution B.

IV. APPLICATION TO A PAIRING MODEL

In the nuclear shell model, quantum Monte Carlo methods
are valuable because they offer the possibility of doing cal-
culations in much larger model spaces than conventional di-
agonalization techniques. Finite-temperature shell-model
studies have been done with the aid of auxiliary-field QMC
methods �23�, and ground-state properties of light nuclei
have been calculated using variational and diffusion QMC
techniques �38�. Furthermore, being able to calculate thermal
properties of nuclei makes it in principle possible to calculate
nuclear level densities �39�. These densities are extremely
important for making good theoretical estimates of nuclear
reaction rates.

The basic assumption in the shell model is the presence of
a mean field in which the nucleons move. To improve on
this, a residual interaction between the nucleons is intro-
duced. Pairing between nucleons is the main short-range cor-
relation induced by the residual interaction. Adding a simple
pairing Hamiltonian to the mean-field Hamiltonian,

Hmf + HP = �
t=p,n

�
k

ektnkt − �
t=p,n

Gt

4 �
k,k�

ak�t
† a

k�t
†

ak̄takt,

�34�

can account for this �40,41�. The operators akt
† create a par-

ticle in the single-particle eigenstate k of the mean-field
Hamiltonian in the valence hell. The index t indicates proton

or neutron states, and k̄ denotes the time-reversed state of k.
The operator nkt is the corresponding number operator, and
ekt=ek̄t the single-particle energy eigenvalue. Gt is the pair-
ing strength for protons or neutrons. Proton-neutron pairing
is not included, but this coupling contributes only in an im-
portant way for N=Z nuclei �42�. As a consequence, the
problem decouples for protons and neutrons. In the following
paragraphs only the neutron part of the model is considered
and the isospin index t is dropped to ease the notations.

Based on algebraic techniques developed by Richardson
and Sherman �43�, the pairing model can be solved exactly
for an arbitrary set of single-particle levels at zero tempera-
ture �44�. In practice it remains difficult to use these exact
results to study the thermodynamics of the model, because
the number of states needed in the ensemble increases very
rapidly with increasing temperature. Thermodynamical prop-
erties have been studied using auxiliary-field QMC methods,
which are free of sign problems for the pairing Hamiltonian

of Eq. �34� when dealing with an even number of particles
�24�. However, the present algorithm can consider nuclei
with even and odd nucleon numbers. Note the auxiliary-field
method scales as O�Ns

3� with Ns the number considered
single-particle states, while a world-line algorithm scales lin-
ear with Ns.

When a nucleon occupies a single-particle state k and its

time-reversed state k̄ is unoccupied, the nucleon is said to be
“unaccompanied.” These states do not participate in the pair
scattering by HP. The mean-field plus pairing Hamiltonian
can be rewritten as Eq. �1�,

H = H0 − V , �35�

H0 = �
k

eknk −
G

2 �
k

bk
†bk, �36�

V =
G

4 �
k�k�

bk
†bk�. �37�

The operators bk
†=ak

†a
k̄

†
create a pair of nucleons in two time-

reversed states and satisfy hard-core boson commutation re-
lations. In order to get the correct finite-temperature proper-
ties, the possibility of changing the number of
unaccompanied nucleons during the simulation should be in-
corporated. A path-integral Monte Carlo method for the pair-
ing Hamiltonian has been developed by Cerf and Martin
�45,46�, but there the number of pairs remained fixed
�24,47�. This problem can now be overcome elegantly by
adding an extra pair breaking term

Vpert =
Gg

2 �
k

�
k��k�

�bk
†ak�ak� + H.c.� �38�

to the interaction part V of Eq. �37�. We define the worm
operator as

A =
1

N̄
�

k

nk +
1

4 �
k�k�

bk
†bk� +

g

2�
k

�
k��k�

�bk
†ak�ak� + H.c.� ,

�39�

with two extra parameters N̄ and g to be optimized. A term
proportional to Vpert is included in the worm operator, in
order to satisfy condition Eq. �10�. This term will generate
configurations with pair-breaking interactions. However, it
can occur that too many of these interactions are generated,
though we are only interested in generating configurations
with a different number of unaccompanied particles, but
without interactions of the type of Eq. �38�. This can be
prevented by imposing the constraint that a configuration can
contain at most two pair breaking interactions of this type.
Observables are only updated if there are no pair-breaking
interactions in the configuration. This means that a number
of Markov steps are needed in order to reach a new allowed
configuration with a different number of unaccompanied par-
ticles. When g of Eq. �39� is put equal to 1, the percentage of
diagonal configurations which contain no Vpert interactions
�see Eq. �38�� is about 15%. This is still efficient enough to
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sample the pairing Hamiltonian. There are a number of ways
to increase the efficiency. First of all one can change the
parameter g, thereby influencing the appearance of pair-
breaking interactions. One can also restrict the number of
times the worm tries to insert a Vpert interaction by allowing
this only after a certain Markov time in which “good” �i.e.,
without pair-breaking interactions� configurations are
sampled. One should also keep in mind that while a configu-
ration contains pair-breaking interactions, the worm itself is
not necessarily of the pair-breaking type. So a lot of Markov
time is spend to change the configuration in a global way
without removing the pair-breaking interactions, leading to
strong decorrelation.

The main physical properties of nuclei in the iron region
are modeled by a schematic mean-field plus pairing Hamil-
tonian. For the mean-field potential, we use a Woods-Saxon
potential. Single particle energies are taken from Ref. �24�. A
full fp+sdg valence space is chosen. These single-particle
states and energies are shown in Table III. A pairing strength
G=16/56 MeV is used. Due to the size of the model space,
a strength smaller than the suggested value of 20 MeV per
nucleon is used �24�. We have tested our code by comparing
finite-temperature results in a fp valence space with the ones
obtained via an exact-diagonalization technique �48�. We
show results of calculations with the valence shell given in
Table III occupied by 10 and 11 valence neutrons. Figure 6
shows the expectation value of the neutron pairing-
interaction operator �HP	 as a function of temperature. At
low temperature, the pairing energies are much lower for the
even number of neutrons. This can be understood by remark-
ing that for an odd number of neutrons there is always at
least one unpaired nucleon. At temperatures higher than
1 MeV, the pairing energies differ only slightly, because
there is an increasing number of unpaired nucleons due to
thermal excitation. This is also reflected in the specific heat
�see Fig. 7�. A peak appears around 0.8 MeV due to the
development of pair correlations.

Because the worm operator conserves angular momen-
tum, one can restrict the intermediate states to a specific
value of the quantum numbers J and Jz. This is not possible
with the auxiliary-field QMC method. In our current imple-

mentation of the algorithm, however, the occupation of each

couple of time-reversed single-particle states �k , k̄� is exactly
known at all times. Because the unaccompanied particle
number operator

Nu = �
k

�nk − bk
†bk� �40�

commutes with the angular momentum projection operator Jz
�but not with J2�, our current code allows restricting the
simulation to configurations with a fixed Jz. Work on extend-
ing this technique to full J projection is in progress.

When the projection on Jz was turned on, we included an
extra global step in order to get a good convergence at the
lowest temperatures. This extra global change allows for one
or two unaccompanied nucleons �which block the state they

TABLE III. Single-particle eigenstates of a Woods-Saxon poten-
tial, taken from Ref. �24�. The chosen valence space contains 42
states. The proton and neutron single-particle energies �in MeV� are
shown on the right.

Single-particle energies �MeV�
Orbital Protons Neutrons

1f7/2 −4.1205 −10.4576

2p3/2 −2.0360 −8.4804

2p1/2 −1.2334 −7.6512

1f5/2 −1.2159 −7.7025

3s1/2 4.7316 −0.3861

2d5/2 5.6562 0.2225

2d3/2 6.1324 0.9907

1g9/2 6.6572 0.5631 FIG. 6. Expectation value of the neutron part of the pairing-
interaction operator as a function of temperature. The pairing
strength Gn is equal to 16/56 MeV. We consider 10 and 11 neutrons
in the fp+sdg valence space �see Table III�. At temperatures below
0.5 MeV the pairing energy is much lower for the even neutron
number.

FIG. 7. The neutron specific heat Cn as a function of tempera-
ture for 10 and 11 neutrons in the full fp+sdg valence space �see
Table III�. Calculations were performed at a constant neutron pair-
ing strength Gn=16/56 MeV.
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occupy� to move to other states and can occur whenever the
worm is diagonal. First an unaccompanied nucleon at a
blocked state l is chosen at random. A “nonblocked” pair of

states �k , k̄� is then chosen with probability

P�k� = exp
�
0

�

�nk�t� + nk̄�t� − 1�ekdt�/Nl, �41�

with nk�t� the occupation number of state k at imaginary time
t and Nl a normalization factor. The subscript l indicates that
the norm is determined for a configuration containing a
blocked state l. The idea behind Eq. �41� is to get a probabil-
ity distribution P�k� which is peaked around the Fermi level,
but other distributions can be chosen as well. The inter-

change of the occupations of the blocked pair of states �l , l̄�
and the nonblocked pair �k , k̄� over the whole imaginary time
interval � is accepted with probability

p = min
1,
Nl

Nk
� . �42�

The acceptance factor for the case when the occupations of
two pairs of nonblocked and blocked states are interchanged
can be constructed in a similar way. The extra step has a high
acceptance rate, but is only necessary to enhance decorrela-
tion at very low temperature when a Jz projection is in-
cluded. At higher temperatures the unaccompanied nucleons
move efficiently from state to state via the last worm piece in
Eq. �39�. Figure 8 shows total energies after Jz projection at
low temperature. Calculations were performed for ten neu-
trons moving in the model space listed in Table III. The
neutron pairing strength is again Gn=16/56 MeV. The figure
also shows exact energy eigenvalues for Jz=0 to Jz=7. These
were calculated via a technique explained in Ref. �44�. The

lowest Jz=1,2 and the lowest Jz=3,4 states are degenerate.
For low enough values of T the finite temperature results
clearly converge to the ground states within the considered
ensembles.

Note that we can compare with exact solutions because
the pairing strength was taken constant for all levels. Our
QMC method allows us to solve pairing models with a
single-particle state-dependent pairing strength Gkk�, for
which no algebraic solutions are available. Taking in mind
that the method is applicable for even and odd nucleon sys-
tems and allows angular momentum symmetry projections,
this could greatly extend the applicability of the pairing
model.

V. CONCLUSIONS AND OUTLOOK

We have set up a quantum Monte Carlo method with a
nonlocal loop updating scheme starting from a local worm
operator in the path integral approach. This method us allows
to sample configurations with specific symmetries and, in
particular, to sample the canonical ensemble. It leads to a
very efficient sampling scheme with all moves accepted and
without “bounces” or critical slowing down near second-
order phase transitions. We have proven detailed balance and
tested ergodicity. Our method opens new perspectives for the
study of quantum many-body systems where particle number
and other symmetries play an important role. It can be ap-
plied to bosons, to fermions in the absence of a sign problem,
and to nonfrustrated spin systems at fixed magnetization. We
have demonstrated this by simulating the Bose-Hubbard
model and a nuclear pairing model. The equal-time one-body
Green’s function can be evaluated with high efficiency.
When nonequal time observables are required, the current
method can in principle still be combined with conventional
nonlocal worm steps. There is still a lot of freedom in choos-
ing the algorithm parameters, which can be used to optimize
the algorithm. For the Bose-Hubbard model we compared
the efficiency of our algorithm �with different parameter sets�
with a directed loop SSE code. Though one should always be
careful when comparing different algorithms, we have strong
indications that our method is very efficient. We have simu-
lated a pairing model for even and odd particle numbers. Our
finite-temperature results clearly supplement algebraic meth-
ods and other QMC methods. Furthermore, a projection on
angular momentum symmetries can be included. We have
demonstrated this by showing Jz-projected results. A work on
full J projection is in progress.
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FIG. 8. Jz-projected internal energies as a function of tempera-
ture. The values of Jz from 0 to 7 are indicated on the left. A clear
convergence to exact zero-temperature results calculated via tech-
niques explained in Ref. �44� can be seen.
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